Absorption und Wärme auf Oberflächen

Gallerie

Außenbauteile und deren Oberflächen sind latent unterschiedlichen umweltbedingten Einflüssen ausgesetzt (z.B. klimatischen Veränderungen im Tages- und Jahresverlauf sowie Erwärmungs- und Abkühlvorgängen durch Temperaturwechsel). Dies führt zu Spannungen aus Längenänderungen in den Bauteilen, was im schlimmsten Fall Schäden verursacht. Die  sich tatsächlich einstellende Oberflächentemperatur wird dabei aus der Summe aller einzelnen Einflüsse gebildet. Dazu zählen:

  • Leitfähigkeit des Materials
  • Temperaturunterschied zwischen der Innen- und Außenseite
  • Albedo (Rückstrahlvermögen) der Oberflächenstruktur
  • Beschaffenheit der Oberfläche, z.B. farbige Beschichtungen
  • Absorptionsvermögen des Materials
  • Windgeschwindigkeit
  • Konvektion
  • Regen
  • Art der Sonnenstrahlung, direkt oder diffus
  • Wärmerückstrahlung des Materials
Die üblichen bauphysikalischen Berechnungen, wie sie z. B. im öffentlich-rechtlichen Nachweisverfahren zum Wärme- und Feuchteschutz notwendig sind, beinhalten derartig detaillierte Nachweise zu den Temperaturen auf den Oberflächen jedoch nicht. Hier findet man nur die Windgeschwindigkeit oder Konvektion wieder, die in Form der Wärmeübergangswiderstände vereinfacht in den Berechnungen genutzt werden. Der Einfluss der Erwärmung der Oberflächen eines Bauteils aus solarer Bestrahlung bleibt dagegen völlig unberücksichtigt. Trotzdem ist es aus bautechnischer Sicht durchaus von Interesse zu ermitteln, welche Oberflächentemperaturen sich auf Bauteilen einstellen und welche Risiken für die Konstruktion aus Längenänderungen resultieren können.

Grundsätzlich gilt, dass alle Körper Strahlung empfangen und abgegeben. Von den Oberflächen der Körper bzw. Baustoffe wird die Strahlung teilweise zurückgeworfen, der nicht reflektierte Teil absorbiert und in Wärme umgewandelt. In Abhängigkeit zur Materialbeschaffenheit des Körpers wird die Wärme als innere Energie gespeichert und weiter in das Bauteil geleitet. Dieser Vorgang führt zu einer materialspezifischen und temperaturabhängigen Längenänderung. Mit der Auswahl des Materials, der Oberflächenbeschaffenheit oder der Farbe kann man diesen Prozess beeinflussen. Deutlich wird der Einfluss der farbigen Beschichtung bei einer sonnenbeschienenen Fläche und den daraus resultierenden Oberflächentemperaturen.

Vergleich der Absorptionsgrade unterschiedlicher üblicher Baustoffe nach Baehr und Stephan (Baehr, H.D.; Stephan, K. ; Wärme- und Stoffübertragung; Auszug Kap. 5.5 Strahlungsaustausch, aus Tab. 5.8,S.633)

Hashem Akbari veröffentlichte eine Übersicht zu verschieden farbigen Musterflächen, von weißem bis schwarzem Lack und unterschiedlichen Materialien, gleichen Aufbaus und gleicher Abmessung, die im Hinblick auf die Auslegung passiver Kühlsysteme im urbanen Raum untersucht wurden. In Abhängigkeit der unterschiedlichen Farben und Absorptionsgrade stellten sich Steigerungen der Oberflächentemperaturen von +10 K bis +49 K ein.

Temperaturerhöhung ausgewählter Baustoffe und Beschichtungen (nach H. Akbari)

Absortionsgrad αs ausgewählter Baustoffe und Beschichtungen (nach H. Akbari)


Akbari H.; Opportunities for saving energy and improving air quality in urban heat islands“ veröffentlicht in „advances in passive cooling“, James and James (Science Publishers) Ltd.; London 2007; S.44

Zur Vorhersage der möglichen Erwärmung von Stoffen, können die Werte des Absorptionsgrades αs für bautypische Materialien genutzt werden. Der Einfluss des Temperaturbereichs auf den Emissionsgrad kann jedoch für eine übliche Nutzung im Baubereich vernachlässigt werden, da nach VDI 3789-2 der betreffende Bereich nur von -30°C bis +100°C reicht. Sollen Bauteiloberflächen eine geringe Temperatur unter solarer Bestrahlung annehmen, muss der Quotient aus Absorptionsgrad und Emissionsgrad (as/ε) klein sein.


Temperaturverlauf der Messungen im Freilandprüfstand am 21.09.2011 in Winningen/Mosel

Untersuchungen der Bergischen Universität Wuppertal an Schieferdächern zeigen deutlich, wie groß der Einfluss der wetterbedingten Einflüsse auf einem Dach sein kann. Aufgrund der Materialeigenschaft des Schiefers erfolgt unter solarer Bestrahlung eine unverzügliche und schnelle Erwärmung der Konstruktion. Das Beispiel der Messungen vom 21.09.2011 zeigt, wie die temperaturmäßig eingeschwungene Dachkonstruktion eine Temperatur besitzt, die der Umgebung entspricht. Mit der beginnenden direkten Bestrahlung steigt die Temperatur auf der Unterseite des Schiefers innerhalb von 8.00 Uhr bis 10.00 Uhr um ca. 12 K, während sich zeitgleich die Umgebungsluft nur um ca. 3 K erwärmt. Zur Mittagszeit erreicht die Schieferfläche dann eine Oberflächentemperatur, die bei ca. 48°C  liegt, und damit 24 K über der Temperatur der Umgebungsluft. Kommt es zu einer Unterbrechung der direkten solaren Bestrahlung durch den Durchzug eines Wolkenfeldes, beginnt unverzüglich der Abkühlungsprozess der Konstruktion, die sich dann der Temperatur der Umgebungsluft annähert.

Mit den Temperaturveränderungen setzen zugleich Änderungen der Länge oder der Raumausdehnung von Baustoffen ein. Bei den meisten Baustoffen oder Bauteilen ist dies hauptsächlich eine längenbezogene Ausdehnung oder Kürzung, was in den Bauteilen zu Zwängung führen kann. Dieser Umstand muss bereits in der Planung berücksichtigt werden und sich in Form von Fugen in den Bauwerken wiederfinden; insbesondere bei metallischen Baustoffen ist dies zu beachten. So gibt die DIN 18339 VOB Vergabe- und Vertragsordnung für Bauleistungen – Teil C für Klempnerarbeiten die maximalen Abstände von Bewegungsausgleichen vor. Gleiche Vorgaben findet man aber ebenso für die Ausführung von Klinker-, gefliesten Fassaden oder Fassaden aus Metalltafeln. Hier müssen entweder Feldbegrenzungsfugen eingeplant werden, um Spannungen aus der Konstruktion auszugleichen, oder die Halterungen von Metalltafeln mit Langlochkonstruktionen nachgewiesen werden, um Längenveränderungen aus thermischen Veränderungen aufzunehmen.

Fachwissen zum Thema

Der Feuchteschutz spielt eine wesentliche Rolle, um einen funktionierenden Wärmeschutz zu gewährleisten.

Der Feuchteschutz spielt eine wesentliche Rolle, um einen funktionierenden Wärmeschutz zu gewährleisten.

Wärmeschutz

Aufgaben und Ziele von Wärme- und Feuchteschutz

Bauliche Mängel resultieren meist aus Fehlern, die einen bauphysikalischen Ursprung haben. Wer mit Planung und Ausführung befasst ist, sollte die Eigenschaften der Baustoffe und die klimatischen Prozesse kennen.

Der U-Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen (Abb.: PHED - Passivhaus Engeldamm in Berlin-Kreuzberg, Scarchitekten, 2012)

Der U-Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen (Abb.: PHED - Passivhaus Engeldamm in Berlin-Kreuzberg, Scarchitekten, 2012)

Wärmeschutz

Der U-Wert als bauphysikalische Kenngröße

Dieser Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen.

Bei einem Gebäude treten Wärmeströme vom beheizten zum unbeheizten Innenraum bzw. dem Außenraum auf (Abb.: ehem. Zollverein School of Management and Design in Essen, Sanaa, 2006).

Bei einem Gebäude treten Wärmeströme vom beheizten zum unbeheizten Innenraum bzw. dem Außenraum auf (Abb.: ehem. Zollverein School of Management and Design in Essen, Sanaa, 2006).

Wärmeschutz

Wärmetransportmechanismen

Da Baustoffe luftgefüllte Kammern bzw. Poren besitzen, überlagern sich die unterschiedlichen Wärmetransportmechanismen.

Zum Seitenanfang

Absorption und Wärme auf Oberflächen

Aufteilung von auftreffender Globalstrahlung in reflektierte, absorbierte und durchgelassene Strahlung

Aufteilung von auftreffender Globalstrahlung in reflektierte, absorbierte und durchgelassene Strahlung

Außenbauteile und deren Oberflächen sind latent unterschiedlichen umweltbedingten Einflüssen ausgesetzt (z.B. klimatischen...

Aufgaben und Ziele von Wärme- und Feuchteschutz

Der Feuchteschutz spielt eine wesentliche Rolle, um einen funktionierenden Wärmeschutz zu gewährleisten.

Der Feuchteschutz spielt eine wesentliche Rolle, um einen funktionierenden Wärmeschutz zu gewährleisten.

Bauliche Mängel resultieren meist aus Fehlern, die einen bauphysikalischen Ursprung haben. Wer mit Planung und Ausführung befasst ist, sollte die Eigenschaften der Baustoffe und die klimatischen Prozesse kennen.

Dämmstoffe in der Übersicht

Aerogel

Aerogel

Dämmstoffe haben die Aufgabe, die Wärmeübertragung durch Bauteile zu reduzieren. Bei der Auswahl des geeigneten Dämmstoffs spielen...

Dämmstoffe: Eigenschaften, Anwendungen, Kennwerte

Übersicht einiger üblicher Dämmstoffe für unterschiedliche Anwendungsbereiche

Übersicht einiger üblicher Dämmstoffe für unterschiedliche Anwendungsbereiche

Wichtiger Bestandteil des energieeffizienten Bauens und Wärmeschutzes sind die Dämmstoffe. Die Rohdichten [kg/m³] und die daraus...

Dämmung erdberührter Bauteile

Da die Bodenplatte ans Erdreich grenzt, erfahren die Wärmeströme eine Dämpfung aus dem beheizten Bauwerk heraus.

Da die Bodenplatte ans Erdreich grenzt, erfahren die Wärmeströme eine Dämpfung aus dem beheizten Bauwerk heraus.

Wenn Wand und Bodenplatte an Erdreich grenzen, erfahren die Wärmeströme aus dem beheizten Bauwerk heraus eine Dämpfung. Wie wirkt sich das auf die Planung aus?

Dämmungsysteme und deren Wirkung

Schematischer Temperaturverlauf in unterschiedlichen Wandaufbauten; monolithische Wand links, Mitte von außen gedämmte Wand, rechts Wand mit Innendämmung

Schematischer Temperaturverlauf in unterschiedlichen Wandaufbauten; monolithische Wand links, Mitte von außen gedämmte Wand, rechts Wand mit Innendämmung

Zur Reduzierung des Wärmeenergiebedarfs in einem Gebäude ist die Dämmung von Fassade, Dach und Bodenplatte eine der wichtigsten...

Der U-Wert als bauphysikalische Kenngröße

Der U-Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen (Abb.: PHED - Passivhaus Engeldamm in Berlin-Kreuzberg, Scarchitekten, 2012)

Der U-Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen (Abb.: PHED - Passivhaus Engeldamm in Berlin-Kreuzberg, Scarchitekten, 2012)

Dieser Wert bildet die Grundlage für die energetische Bewertung von allen Außenbauteilen, die beheizte Innenräume von Außenräumen oder unbeheizten Innenräumen abgrenzen.

Energetischer Wärmeschutz

Innerhalb der Bilanzierung wird unterschieden nach der Nutzung der Gebäude bzw. nach Wohn- oder Nichtwohngebäude.

Innerhalb der Bilanzierung wird unterschieden nach der Nutzung der Gebäude bzw. nach Wohn- oder Nichtwohngebäude.

Bei der Bilanzierung wird zwischen Wohn- oder Nichtwohnnutzung sowie bestehenden Gebäuden unterschieden. Anforderungen an die Dämmqualität der Hüllflächen und die technische Ausstattung werden formuliert.

GEG und die Umrechnung von Treibhausgasemissionen

Mit dem Gebäudeenergiegesetz sollen die Ziele des Klimaschutzes Mittelpunkt der Betrachtungen werden. Dazu werden in der Anlage 9 die auf den Energieträger bezogenen Emissionsfaktoren in g CO2-Äquivalent pro kWh aufgeführt.

Mit dem Gebäudeenergiegesetz sollen die Ziele des Klimaschutzes Mittelpunkt der Betrachtungen werden. Dazu werden in der Anlage 9 die auf den Energieträger bezogenen Emissionsfaktoren in g CO2-Äquivalent pro kWh aufgeführt.

Durch die Methodik des Gebäudeenergiegesetzes sollen die Ziele des Klimaschutzes und die Reduzierung von Treibhausgasemissionen deutlicher herausgestellt werden.

GEG und Niedrigstenergie-Standard

Künftig werden die Ziele des Klimaschutzplans 2030 für Neubauten im Gebäudebestand und beim Einsatz erneuerbarer Energien durch das GEG vorgegeben (Abb.: MOE - Wohnhaus Möckernstraße in Berlin, Carlo Witte Architekten, 2019).

Künftig werden die Ziele des Klimaschutzplans 2030 für Neubauten im Gebäudebestand und beim Einsatz erneuerbarer Energien durch das GEG vorgegeben (Abb.: MOE - Wohnhaus Möckernstraße in Berlin, Carlo Witte Architekten, 2019).

Die Ziele des Klimaschutzplans 2030 für Neubauten im Gebäudebestand und beim Einsatz erneuerbarer Energien werden künftig durch das Gebäudeenergiegesetz vorgegeben.

Materialeigenschaften und Wärmeschutz

Die Wärmeleitfähigkeit des Baustoffs Beton mit einer mittleren Rohdichte von 1.800 - 2.200 kg/m³ liegt bei 1,15 - 1,65 W/mK

Die Wärmeleitfähigkeit des Baustoffs Beton mit einer mittleren Rohdichte von 1.800 - 2.200 kg/m³ liegt bei 1,15 - 1,65 W/mK

Grundlage des Wärmeschutzes und des energetisch optimierten Bauens bilden Baustoffe mit materialtypischen Eigenschaften, wie der...

Nachhaltiges Bauen mit Dämmstoffen

Für das nachhaltige Bauen muss bei der Dämmauswahl nicht nur die Wärmeleitfähigkeit zur Erfüllung der rechtlichen Vorgaben...

Nachrüstpflicht nach GEG: Dämmung der obersten Geschossdecke

Im Wortlaut des GEG sind Eigentümer von Wohngebäuden sowie von Nichtwohngebäuden, die nach ihrer Zweckbestimmung jährlich mindestens vier Monate lang und auf Innentemperaturen von mindestens 19 Grad Celsius beheizt werden, dazu verpflichtet, zugängliche Decken beheizter Räume zum unbeheizten Dachraum (oberste Geschossdecken) zu dämmen.

Im Wortlaut des GEG sind Eigentümer von Wohngebäuden sowie von Nichtwohngebäuden, die nach ihrer Zweckbestimmung jährlich mindestens vier Monate lang und auf Innentemperaturen von mindestens 19 Grad Celsius beheizt werden, dazu verpflichtet, zugängliche Decken beheizter Räume zum unbeheizten Dachraum (oberste Geschossdecken) zu dämmen.

In welchen Fällen besteht für Eigentümer von bestehenden Gebäuden die Verpflichtung, die oberste Geschossdecke gegen unbeheizte Räume oder das Dach zu dämmen, welche Ausnahmen gibt es?

Sommerlicher Wärmeschutz: Der g-Wert der Verglasung

Strahlungsverhalten von Glasscheiben bestehend aus dem Einfluss der Emission, Transmission und Reflexion

Strahlungsverhalten von Glasscheiben bestehend aus dem Einfluss der Emission, Transmission und Reflexion

Um einen Aufenthaltsraum hinsichtlich der Anforderungen an den sommerlichen Wärmeschutz nach DIN 4108-2 Wärmeschutz und...

Sommerlicher Wärmeschutz: Grundlagen und Ziele

Durch die Ausrichtung der Fenster zu den Himmelsrichtungen nehmen Planerinnen und Planer bereits in einer frühen Phase Einfluss auf das sommerliche Aufwärmverhalten (Abb.: Hafencity Hamburg).

Durch die Ausrichtung der Fenster zu den Himmelsrichtungen nehmen Planerinnen und Planer bereits in einer frühen Phase Einfluss auf das sommerliche Aufwärmverhalten (Abb.: Hafencity Hamburg).

Das im November 2020 eingeführte GEG übernahm die Anforderungen der EnEV. Der § 14 beschreibt in fünf Punkten die Vorgaben und Voraussetzungen für Neubaumaßnahmen.

Sommerlicher Wärmeschutz: Kennwerte und Bauteile

Schematische Darstellung der anrechenbaren wirksamen Schichtdicken einer massiven Wand

Schematische Darstellung der anrechenbaren wirksamen Schichtdicken einer massiven Wand

Ein wesentlicher Faktor zur Beurteilung der Konstruktion unter sommerlichen Bedingungen stellt die Art der Konstruktion von...

Sommerlicher Wärmeschutz: Nachweis und Berechnung

Vergleich der Abminderungsfaktoren des Sonnenschutzes nach DIN 4108-2

Vergleich der Abminderungsfaktoren des Sonnenschutzes nach DIN 4108-2

SonneneintragskennwerteDie Ermittlung zum sommerlichen Wärmeschutz erfolgt über den Sonneneintragskennwert. Der vorhandene...

Sommerlicher Wärmeschutz: Wärmeeintrag und Bauteilerwärmung

Glastafel aus Zweischeiben-Sonnenschutzglas: Die menschlichen Wärmestrahlen passieren nicht die Glastafel

Glastafel aus Zweischeiben-Sonnenschutzglas: Die menschlichen Wärmestrahlen passieren nicht die Glastafel

Unter sommerlichen Bedingungen haben die Art und Weise, wie Gebäude und Räume konstruiert sind, wesentlichen Einfluss auf die...

Wärmebrücken und GEG

Wie die Energieeinsparverordnung legt das seit November 2020 gültige Gebäudeenergiegesetz fest, dass der Einfluss konstruktiver Wärmebrücken auf den Jahres-Heizwärmebedarf nach den Regeln der Technik und den im Einzelfall wirtschaftlich vertretbaren Maßnahmen so gering wie möglich gehalten wird.

Wie die Energieeinsparverordnung legt das seit November 2020 gültige Gebäudeenergiegesetz fest, dass der Einfluss konstruktiver Wärmebrücken auf den Jahres-Heizwärmebedarf nach den Regeln der Technik und den im Einzelfall wirtschaftlich vertretbaren Maßnahmen so gering wie möglich gehalten wird.

Über die Vorgaben des im November 2020 in Kraft getretenen Gebäudeenergiegesetzes in Bezug auf den Einfluss von Wärmebrücken.

Wärmebrücken: Arten

Fassade mit einem gedübelten WDVS: Im Bereich der Dübel kommt es aufgrund der Wärmebrückeneffekte zu höheren Wärmeströmen und damit zur punktuellen Trocknung; den Algen wird die Lebensgrundlage entzogen

Fassade mit einem gedübelten WDVS: Im Bereich der Dübel kommt es aufgrund der Wärmebrückeneffekte zu höheren Wärmeströmen und damit zur punktuellen Trocknung; den Algen wird die Lebensgrundlage entzogen

Materialbedingte WärmebrückenMaterialbedingte Wärmebrücken entstehen bei zusammengesetzten Bauteilen, wie z.B. einer Fachwerkwand...

Wärmebrücken: Grundlagen

Wärmeverluste im Mauerfuß, an Stürzen und Fenstersimsen

Wärmeverluste im Mauerfuß, an Stürzen und Fenstersimsen

Als Wärmebrücken werden örtlich begrenzte Bereiche in der wärmeübertragenden Hülle eines Bauwerks bezeichnet, die eine höhere...

Wärmebrücken: Planungshinweise

Für die thermische Trennung bietet die Industrie unterschiedliche Einbauteile an, wie z.B. Isolationskörbe für auskragende Betonplatten.

Für die thermische Trennung bietet die Industrie unterschiedliche Einbauteile an, wie z.B. Isolationskörbe für auskragende Betonplatten.

Wie lassen sich Wärmebrücken vermeiden bzw. deren Einfluss in der energetischen Bilanzierung reduzieren?

Wärmebrückenbilanzierung nach DIN 4108 Beiblatt 2

Neben dem pauschalen Ansatz, Wärmebrücken ohne Nachweis über einen Zuschlag von ∆WB 0,10 W/(m²K) auf die gesamte Hüllfläche zu berücksichtigen, oder einen detaillierten Nachweis mittels Simulationen zu erstellen, besteht nun die Möglichkeit, relativ effizient einen Gleichwertigkeitsnachweis zu führen.

Neben dem pauschalen Ansatz, Wärmebrücken ohne Nachweis über einen Zuschlag von ∆WB 0,10 W/(m²K) auf die gesamte Hüllfläche zu berücksichtigen, oder einen detaillierten Nachweis mittels Simulationen zu erstellen, besteht nun die Möglichkeit, relativ effizient einen Gleichwertigkeitsnachweis zu führen.

Das 2019 veröffentlichte Beiblatt ermöglicht einen Gleichwertigkeitsnachweis auf Grundlage von Bildvorlagen aus der Norm. Dazu wurden die Kategorien A und B für Wärmebrücken eingeführt.

Wärmetransportmechanismen

Bei einem Gebäude treten Wärmeströme vom beheizten zum unbeheizten Innenraum bzw. dem Außenraum auf (Abb.: ehem. Zollverein School of Management and Design in Essen, Sanaa, 2006).

Bei einem Gebäude treten Wärmeströme vom beheizten zum unbeheizten Innenraum bzw. dem Außenraum auf (Abb.: ehem. Zollverein School of Management and Design in Essen, Sanaa, 2006).

Da Baustoffe luftgefüllte Kammern bzw. Poren besitzen, überlagern sich die unterschiedlichen Wärmetransportmechanismen.

Winterlicher Wärmeschutz: Grundlagen und Ziele

Bei zerklüfteten Bauten steigt neben der Erhöhung der Hüllfläche auch der Einfluss von Wärmebrücken bzw. Durchdringungspunkten an Fassaden und Dächern (Abb.: Bürogebäude am Potsdamer Platz, Berlin).

Bei zerklüfteten Bauten steigt neben der Erhöhung der Hüllfläche auch der Einfluss von Wärmebrücken bzw. Durchdringungspunkten an Fassaden und Dächern (Abb.: Bürogebäude am Potsdamer Platz, Berlin).

Über die Ausrichtung, das Verhältnis der Flächen, den Öffnungsanteil und die Hüllfläche beeinflussen Planerinnen und Planer bereits beim Entwurf eines Gebäudes den Heizenergiebedarf.